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Abstract. We present a new algorithm for unbound (real life) docking
of molecules, whether protein–protein or protein–drug. The algorithm
carries out rigid docking, with surface variability/flexibility implicitly ad-
dressed through liberal intermolecular penetration. The high efficiency
of the algorithm is the outcome of several factors: (i) focusing initial
molecular surface fitting on localized, curvature based surface patches;
(ii) use of Geometric Hashing and Pose Clustering for initial transfor-
mation detection; (iii) accurate computation of shape complementarity
utilizing the Distance Transform; (iv) efficient steric clash detection and
geometric fit scoring based on a multi-resolution shape representation;
and (v) utilization of biological information by focusing on hot spot rich
surface patches. The algorithm has been implemented and applied to a
large number of cases.

1 Introduction

Receptor-ligand interactions play a major role in all biological processes. Knowl-
edge of the molecular associations aids in understanding a variety of pathways
taking place in the living cell. Docking is also an important tool in computer
assisted drug design. A new drug should fit the active site of a specific recep-
tor. Although electrostatic, hydrophobic and van der Waals interactions affect
greatly the binding affinity of the molecules, shape complementarity is a neces-
sary condition. The docking problem is considered difficult and interesting for
a number of reasons. The combinatorial complexity of the possible ways to fit
the surfaces is extremely high. The structures of the molecules are not exact,
containing experimental errors. In addition, molecules usually undergo confor-
mational changes upon association, known as induced fit. Docking algorithms
must be tolerant to those difficulties, making the docking task one of the most
challenging problems in structural bioinformatics.
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There are two instances in the docking task - ’bound’ and ’unbound’. In
the ’bound’ case we are given the co-crystallized complex of two molecules. We
separate them artificially and the goal is to reconstruct the original complex.
No conformational changes are involved. Successful application of an algorithm
to ’bound’ docking cases is necessary to test its validity, yet it does not en-
sure success in the real-life ’unbound’ docking prediction, where we are given
two molecules in their native conformations. In this case the docking algorithm
should consider possible conformational changes upon association. Most of the
docking algorithms encounter difficulties with this case, since shape complemen-
tarity is affected [14].

The goal of docking algorithms is to detect a transformation of one of the
molecules which brings it to optimal fit with the other molecule without causing
steric clash. Naturally, optimality here depends not only on geometric fit, but
also on biological criteria representing the resulting complex stability. Molecular
docking algorithms may be classified into two broad categories: (i) brute force
enumeration of the transformation space; (ii) local shape feature matching.

Brute force algorithms search the entire 6-dimensional transformation space
of the ligand. Most of these methods [33,30,31,32,11,2,3] use brute force search
for the 3 rotational parameters and the FFT (Fast Fourier Transform, [19]) for
fast enumeration of the translations. The running times of those algorithms may
reach days of CPU time. Another brute force algorithm is the ’soft docking’
method [17] that matches surface cubes. There are also non-deterministic meth-
ods that use genetic algorithms [18,12].

Local shape feature matching algorithms have been pioneered by Kuntz [20].
In 1986 Connolly [6] described a method to match local curvature maxima and
minima points. This technique was improved further in [23,24] and was also
applied to unbound docking [25]. Additional algorithms that employ shape com-
plementarity constraints, when searching for the correct association of molecules
were also developed [21,13,10]. Some algorithms are designed to handle flexible
molecules [28,27,9].

Our method is based on local shape feature matching. To reduce complexity
we, first, try to detect those molecular surface areas which have a high probabil-
ity to belong to the binding site. This reduces the number of potential docking
solutions, while still retaining the correct conformation. The algorithm can treat
receptors and ligands of variable sizes. It succeeds in docking of large proteins
(antibody with antigen) and small drug molecules. The running times of the al-
gorithm are of the order of seconds for small drug molecules and several minutes
for large proteins. In addition, we improve the shape complementarity measure,
making the function more precise and reducing the complexity of its computa-
tion.

2 Methods

Our docking algorithm is inspired by object recognition and image segmentation
techniques used in computer vision. We can compare docking to assembling a
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jigsaw puzzle. When solving the puzzle we try to match two pieces by picking one
piece and searching for the complementary one. We concentrate on the patterns
that are unique for the puzzle element and look for the matching patterns in
the rest of the pieces. Our algorithm employs a similar technique. Given two
molecules, we divide their surfaces into patches according to the surface shape.
These patches correspond to patterns that visually distinguish between puzzle
pieces. Once the patches are identified, they can be superimposed using shape
matching algorithms. The algorithm has three major stages:

1. Molecular Shape Representation - in this step we compute the molec-
ular surface of the molecule. Next, we apply a segmentation algorithm for
detection of geometric patches (concave, convex and flat surface pieces). The
patches are filtered, so that only patches with ’hot spot’ residues are retained
[15].

2. Surface Patch Matching - we apply a hybrid of the Geometric Hashing
[34] and Pose-Clustering [29] matching techniques to match the patches de-
tected in the previous step. Concave patches are matched with convex and
flat patches with any type of patches.

3. Filtering and Scoring - the candidate complexes from the previous step
are examined. We discard all complexes with unacceptable penetrations of
the atoms of the receptor to the atoms of the ligand. Finally, the remaining
candidates are ranked according to a geometric shape complementarity score.

2.1 Molecular Shape Representation

Molecular Surface Calculation. The first stage of the algorithm computes
two types of surfaces for each molecule. A high density Connolly surface is gen-
erated by the MS program [5,4]. The calculated surface is preprocessed into two
data structures: distance transform grid and multi-resolution surface (see Ap-
pendix). Those data structures are used in the scoring routines. In addition, the
distance transform grid is used further in the shape representation stage of the
algorithm. Next, a sparse surface representation [22] is computed. It is used in
the segmentation of the surface into geometric patches.

The sparse surface consists of points nicknamed ’caps’, ’pits’ and ’belts’,
where each cap point belongs to one atom, a belt to two atoms and a pit to
three atoms. These correspond to the face centers of the convex, concave and
saddle areas of the molecular surface [22]. The gravity center of each face is
computed as a centroid and projected to the surface in the normal direction.

Detection of Geometric Patches. The input to this step is the sparse set of
critical points. The goal is to divide the surface to patches of almost equal area
of three types according to their shape geometry: concavities, convexities and
flats. We construct a graph induced by the points of the sparse surface. Each
node is labeled as a ’knob’, ’flat’ or a ’hole’ according to their curvature (see
below). We compute connected components of knobs, flats and holes. Then we
apply the split and merge routines to improve the component partitioning of the
surface to patches of almost equal area.
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Surface Topology Graph. Based on the set of sparse critical points, the graph
Gtop = (Vtop, Etop) representing the surface topology is constructed in the fol-
lowing way:

Vtop = {Sparse Critical Points}
Etop = {(u, v) | if u and v belong to the same atom}

The number of edges in the graph is linear, since each pit point can be connected
by an edge to at most three caps and three belts. Each belt point is connected
to two corresponding caps (see figure 2 (a)).

Shape Function Calculation. In order to group the points into local curvature
based patches we use the shape function defined in [6]. A sphere of radius R is
placed at a surface point. The fraction of the sphere inside the solvent-excluded
volume of the protein is the shape function at this point. The shape function of
every node in the graph is calculated. The radius of the shape function sphere is
selected according to the molecule size. We use 6Å for proteins and 3Å for small
ligands. As a result every node is assigned a value between 0 and 1. In previous
techniques [23] points with shape function value less than 1

3 , named ’knobs’ and
points with value greater than 2

3 , named ’holes’, were selected as critical points.
All ’flat’ points with function value between those two were ignored. As can be
seen from the histogram of the shape function values of the trypsin molecule
(PDB code 2ptn) in figure 1, a large number of points are ’flats’. In fact about
70% of the points are flats and about 30% are knobs or holes. (These statistics
are typical for other molecules as well.) Consequently, the problem was, that the
number of matching sets of quadraples/triples/pairs of knobs versus holes was
very low [6]. Here we sort the shape function values and find two cut-off values
that split the nodes to three equal sized sets of knobs, flats and holes.

Simultaneously with the shape function calculation, the volume normal ori-
entation is computed using the same probe sphere. The solvent-accessible part
is defined as the complement of the solvent-excluded part of the probe sphere.
Given a probe sphere we define the volume normal to be the unit vector at the
surface point in the direction of the gravity center of solvent-accessible part.

Fig. 1. Histogram of shape function
values for the trypsin molecule (PDB
code 2ptn).

Patch Detection. The idea is to divide
the surface of the molecule into non-
intersecting patches of critical points. The
geometric patch is defined as a connected
set of critical points of the same type
(knobs, holes or flats). By ’connected’ we
mean that points of the patch should cor-
respond to a connected subgraph of Gtop.
To assure better matching of patches,
they must be of almost equal sizes. For
each type of points (knobs, flats, holes)

the graphs Gknob, Gflat and Ghole are constructed as subgraphs of Gtop induced
on the corresponding set of nodes.
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The algorithm for finding connected components in a graph is applied to each
of the three graphs. The output components are of different sizes, so split and
merge routines are applied to achieve a better partition to patches. We present
some definitions that are used below:

1. The geodesic distance between two nodes of the connected component is
a weighted shortest path between them, where the weight of every edge is
the Euclidean distance between the corresponding surface points.

2. The diameter of the component is defined as the largest geodesic distance
between the nodes of the component. Nodes s and t that give the diameter
are called diameter nodes. In case the diameter nodes are not unique we
arbitrarily choose one of the pairs as the single diameter.

For each connected component we compute the diameter and it’s nodes by
running the APSP (All Pairs Shortest Paths [7]) algorithm on the component.
We use two thresholds for the diameter of the components as follows:

– If the diameter of the connected component is more than low patch thr and
less than high patch thr, the component represents a valid geometric patch.

– If the diameter of the connected component is larger than high patch thr the
split routine is applied to the component.

– If the diameter of the connected component is less than low patch thr the
points of this component are merged with closest components.

Note that a connected component is not always a patch, since the component
may be split to a number of patches or merged with other patches.

Split routine. Given a component C, the distance matrix from the APSP algo-
rithm and it’s diameter nodes s, t we split it into two new components S and T
that correspond to the Voronoi cells [8] of the points s, t. If the diameter of each
new component is within the defined thresholds, the component is added to the
list of valid patches, otherwise it is split again.

Merge routine. The goal is to merge points of small components with ’closest’
big patches. Those points correspond to the components that are usually located
between hole and knob patches, where surface topology changes quickly from
concave to convex. For each point of small components we compute the geodesic
distance to every valid patch using the Dijkstra [7] algorithm. The point is added
to the closest patch.

At this stage most of the surface is represented by three types of patches of
almost equal areas (see figure 2(b)). Now, we attempt to detect those patches,
which are most likely to appear in the binding sites of the molecules.

Detection of Active Sites. The success of the docking can be significantly
improved by determining the active site of the molecules. Knowledge of the
binding site of at least one molecule greatly reduces the space of possible docking
interactions. There are major differences in the interactions of different types of
molecules (e.g. enzyme–inhibitor, antibody–antigen). We have developed filters
for every type of interaction and focus only on the patches that were selected by
the appropriate filter.
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Fig. 2. (a) Surface topology graphs for trypsin inhibitor (PDB code 1ba7). The caps,
belts and pits are connected with edges. (b) Geometric patches: the patches are in light
colors and the protein is dark.

Hot Spot Filtering. A number of studies have shown that protein-protein inter-
faces have conserved polar and aromatic ’hot-spot’ residues. The goal is to use
the statistics collected [15,16] in order to design a patch filter. The filter is sup-
posed to select patches that have high probability of being inside the active site.
Residue hot spots have experimentally been shown (via alanine scanning muta-
genesis) to contribute more than 2 Kcal/mol to the binding energetics. In order
to measure it, we compute the propensity of a residue in a patch Pr(resi, patch)
as the fraction of the residue frequency in the patch compared to the residue
frequency on the molecular surface. Subsequently, we choose patches with the
high propensities of hot spot residues which are: (i) Tyr, Asp, Asn, Glu, Ser and
Trp for antibody; (ii) Arg, Lys, Asn and Asp for antigen; (iii) Ser, Gly, Asp and
His for protease; and (iv) Arg, Lys, Leu, Cys and Pro for protease inhibitor.

Antibody-Antigen interactions: Detection of CDRs. It is well known that anti-
bodies bind to antigens through their hypervariable (HV) regions, also called
complementarity-determining regions (CDRs) [1]. The three heavy-chain and
three light-chain CDR regions are located on the loops that connect the β strands
of the variable domains. We detect the CDRs by aligning the sequence of the
given antibody to a consensus sequence of a library of antibodies. The docking
algorithm is then restricted to patches which intersect the CDR regions.

2.2 Surface Patch Matching

Given the patches of a receptor and a ligand, we would like to compute hypo-
thetical docking transformations based on local geometric complementarity. The
idea is that knob patches should match hole patches and flat patches can match
any patch. We use two techniques for matching:



Efficient Unbound Docking of Rigid Molecules 191

1. Single Patch Matching: one patch from the receptor is matched with one
patch from the ligand. This type of matching is used for docking of small
ligands, like drugs or peptides.

2. Patch-Pair Matching: two patches from the receptor are matched with two
patches from the ligand. We use this type of matching for protein-protein
docking. The motivation in patch-pair matching is that molecules interact-
ing with big enough contact area must have more than one patch in their
interface. Therefore matching two patches simultaneously will result in nu-
merically more stable transformations. For this purpose we develop a concept
of neighboring patches: two patches are considered as neighbors if there is
at least one edge in Gtop that connects the patches.

Both utilize the Computer Vision motivated Geometric Hashing [34] and Pose
Clustering [29] techniques for matching of critical points within the patches.
At first local features of the objects are matched to compute the candidate
transformations that superimpose them. After matching of the local features
a clustering step is applied to select poses (hypothetical transformations) with
strong evidence, i.e. transformations consistent with a large enough number of
matching local features.

Fig. 3. Base formed by two points
and their normals.

Generation of Poses. We implement the
matching step using Geometric Hashing [34].
There are two stages in the matching algo-
rithm: preprocessing and recognition. We de-
note by a base a minimal set of critical fea-
tures which uniquely defines a rigid trans-
formation. A transformation invariant shape
signature is calculated for each base. In the

preprocessing stage, each base is stored in a hash-table according to its signa-
ture. In the recognition stage, the bases of the receptor are computed. The base
signature is used as a key to the hash-table. For each ligand base found in the
hash-table a candidate transformation that superimposes local features of the
receptor and the ligand is computed.

We use two points (a, b) and their volume normals (na, nb) as the base for
transformation calculation [23]. The base signature (dE, dG, α, β, ω) is defined
as follows (see figure 3):

– The Euclidean and geodesic distance between the two points: dE and dG.
– The angles α, β formed between the line segment ab and each of the normals

na, nb.
– The torsion angle ω formed between the plane of a, b, na and the plane of

a, b, nb.

Two signatures, one from the receptor and the other from the ligand, are com-
patible if their signatures are close enough. Note that we do not demand here
matching of a knob to a hole, since it is ensured by matching knob patches with
hole patches.
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Clustering Poses. Matching of local features may lead to multiple instances
of ’almost’ the same transformation (similar pose). Therefore, clustering is nec-
essary to reduce the number of potential solutions. We apply two clustering
techniques: clustering by transformation parameters and RMSD clustering. Clus-
tering by transformation parameters is coarse but very fast, and is applied first.
After the number of transformations is significantly reduced, we run RMSD
clustering, which is more exact, but also much slower.

2.3 Filtering and Scoring

Since the transformation is computed by local matching of critical points within
patches, it may result in unacceptable steric clashes between the receptor and
ligand atoms. We should filter out all those transformations. In addition, we
need to rank the rest of the solutions.

Steric Clashes Test. In this stage the distance transform grid is extensively used.
For each candidate transformation we perform the steric clash test as follows.
The transformation is applied on the surface points of the ligand. Next we access
the distance transform grid of the receptor with the coordinates of every surface
point. If the distance is less than penetration threshold for each surface point,
the transformation is retained for the next step, otherwise the transformation is
disqualified.

Geometric Scoring. The general idea is to divide the receptor into shells ac-
cording to the distance from the molecular surface. For example, in [23,10] a
receptor was divided into 3 shells and a grid representing them was constructed
as follows: interior(I) grid voxels corresponding to interior atoms (no surface
point generated for them), exterior(E) voxels for exterior atoms and surface(S)
voxels for surface MS dots. The score of the transformation was a weighted func-
tion of ligand surface points in each range: S-4E-10I. We have generalized this
approach and made it more accurate using a distance transform grid (see Ap-
pendix). Each shell is defined by a range of distances in the distance transform
grid. Instead of using 3 shells we can use any number of shells and the score is
a weighted function of the number of ligand surface dots in each shell. In the
current algorithm implementation 5 shells are used: [−5.0,−3.6), [−3.6,−2.2),
[−2.2,−1.0), [−1.0, 1.0), [1.0−). In the scoring stage for each candidate transfor-
mation we count the number of surface points in each shell. The geometric score
is a weighted average of all the shells, when we prefer candidate complexes with
large number of points in the [−1.0, 1.0) shell, and as little as possible points in
the ’penetrating’ shells: [−5.0,−3.6), [−3.6,−2.2).

Those algorithms provide very accurate filtering and scoring, but are also
very slow, especially when high-density surface is used for the ligand. In order
to speed-up this part of the program we use a multi-resolution molecular surface
data structure (see Appendix). We construct two trees: one of high density using
Connolly’s MS Surface and the other of lower density, using the sparse surface
[22] as the lowest level. The tree based on the sparse surface is used for the
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primary scoring of the transformations. The tree based on the denser MS surface
is used for penetration (steric clash) check and for fine geometric scoring.

Given a set of candidate transformations from the matching step, we first
check the steric clashes. Only transformations with ’acceptable’ penetrations
(less than 5Å) of the atoms are retained. These transformations are scored with
the low density based tree. We select 500 high scoring transformations for every
patch and re-score them using the high density surface.

The remaining transformations can be further re-ranked according to biolog-
ical criteria.

3 Results and Discussion

It is not trivial to detect data to test unbound docking algorithms. Note that we
need to know three structures. The structures of the two molecules to be docked
as well as the structure of their complex, so that we could reliably test our
prediction results. Thus, the maximal currently available benchmark contains
only few tens of molecule pairs.

Table 1 lists the 35 protein-protein cases from our test set. Our dataset in-
cludes 22 enzyme/inhibitor cases and 13 antibody/antigen cases. In 21 cases
the unbound structures of both proteins were used in docking, in the other 14
cases the unbound structure for only one molecule was available. Our method
is completely automated. The same set of parameters is used for each type of
interactions. In the enzyme/inhibitor docking we match ’hole’ patches of the
enzyme with ’knob’ patches of the inhibitor, since the inhibitor usually blocks
the active site cavity of the enzyme. In the antibody/antigen docking we match
all patch types, since the interaction surfaces are usually flat compared to en-
zyme/inhibitor. In addition we restrict our search to the CDRs of the antibody.

The final results are summarized in table 2. All the runs were made on a PC
workstation (Pentium c©II 500 MHz processor with 512MB internal memory).
First, we present the results for the bound cases. As can be seen the correct so-
lution was found for all the cases. In 31 out of the 35 examples, the lowest RMSD
achieved is below 2Å. The first ranked result is the correct one in 26 cases. In
other 9 cases the correct solution is ranked among the first 30 results. Columns
4 and 5 describe the steric clashes that occur when the unbound structures are
superimposed on the bound complex. It shows the extent of shape complemen-
tarity in every example. Column 4 lists the maximal penetration of the ligand
and receptor surfaces into each other. In some cases it is more than 5Å. Column
5 lists the number of residues of the receptor and the ligand respectively that
cause deep steric clashes (more than 2.2Å surface penetration). The number of
those residues is more then 10 in 4 cases. In the unbound-bound cases the num-
bers are significantly lower, allowing us to reach better results. We do not list
the penetration level for the bound complexes since the numbers are very small:
the maximal surface penetration is below 2.5Å. In the results obtained for the
unbound cases we succeeded in finding solutions with RMSD under 5Å in all but
3 cases. In those cases (PDB codes 1DFJ, 2SNI, 1DQJ) shape complementarity
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(a) Antibody–antigen (b) Protein–DNA

Fig. 4. (a) Unbound docking of the Antibody Fab 5G9 with Tissue factor (PDB
codes 1FGN,1BOY). The antibody is depicted in ribbons representation and the CDRs
are in spacefill. The antigen and the solution obtained by our program are depicted
in backbone representation (RMSD 2.27Å, total rank 8). (b) Protein-DNA docking:
unbound-bound case (PDB codes 1A73,1EVX). Best RMSD obtained 0.87, rank 2.
The DNA is shown in spacefill. Our solution superimposed on the native complex is
shown in backbone representation.

is affected by many side-chain movements. The rank is under 350 in 17 out of
22 enzyme/inhibitor cases and is under 1000 in 11 out of 13 antibody/antigen
cases. The best ranked result for antibody Fab 5G9/Tissue factor is shown in
figure 4(a).

The program was tested on additional examples (Protein-DNA, Protein-
Drug) which are not shown here. In figure 4(b) we show one of these results.

The rank of the correct solution depends on a number of factors:

1. Shape complementarity - steric clashes introduce noise to the scoring
functions, reducing the score and the rank of the correct solution.

2. Interface shape - it is much easier to find correct association in molecules
with concave/convex interface (enzyme/inhibitor cases) rather than with
flat interfaces (antibody/antigen cases). The shape complementarity is much
more prominent in the concave/convex interfaces and therefore easier to
detect.

3. Sizes of the molecules - the larger the molecules the higher the number
of results.

In our algorithm the division to patches and selection of energetic hot spots
reduce the area of the matched surfaces, therefore the number of possible docking
configurations is decreased and the ranking is improved.
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Table 1. The dataset of Enzyme/Inhibitor and Antibody/Antigen test cases. We list
the PDB codes of the complex and the unbound structures, protein names and the
number of amino acids in every protein. The unbound-bound cases are marked with *.

Complex Receptor Ligand Description Rec. size Lig. size
1ACB 5CHA 1CSE(I) α-chymotrypsin/Eglin C 236 63
1AVW 2PTN 1BA7 Trypsin/Sotbean Trypsin inhibitor 223 165
1BRC 1BRA 1AAP Trypsin/APPI 223 56
1BRS 1A2P 1A19 Barnase/Barstar 108 89
1CGI 1CHG 1HPT α-chymotrypsinogen/pancreatic secre-

tory trypsin inhibitor
226 56

1CHO 5CHA 2OVO α-chymotrypsin/ovomucoid 3rd Do-
main

236 56

1CSE 1SCD 1ACB(I) Subtilisin Carlsberg/Eglin C 274 63
1DFJ 2BNH 7RSA Ribonuclease inhibitor/Ribonuclease A 456 124
1FSS 2ACE 1FSC Acetylcholinesterase/Fasciculin II 527 61
1MAH 1MAA 1FSC Mouse Acetylcholinesterase/inhibitor 536 61
1PPE* 2PTN 1PPE Trypsin/CMT-1 223 29
1STF* 1PPN 1STF Papain/Stefin B 212 98
1TAB* 2PTN 1TAB Trypsin/BBI 223 36
1TGS 2PTN 1HPT Trypsinogen/Pancreatic secretory

trypsin inhibitor
223 56

1UDI* 1UDH 1UDI Virus Uracil-DNA glycosy-
lase/inhibitor

228 83

1UGH 1AKZ 1UGI Human Uracil-DNA glycosy-
lase/inhibitor

223 83

2KAI 2PKA 6PTI Kallikrein A/Trypsin inhibitor 231 56
2PTC 2PTN 6PTI β-trypsin/ Pancreatic trypsin inhibitor 223 56
2SIC 1SUP 3SSI Subtilisin BPN/Subtilisin inhibitor 275 108
2SNI 1SUP 2CI2 Subtilisin Novo/Chymotrypsin in-

hibitor 2
275 65

2TEC* 1THM 2TEC Thermitase/Eglin C 279 63
4HTC* 2HNT 4HTC α-Thrombin/Hirudin 259 61
1AHW 1FGN 1BOY Antibody Fab 5G9/Tissue factor 221 211
1BQL* 1BQL 1DKJ Hyhel - 5 Fab/Lysozyme 217 129
1BVK 1BVL 3LZT Antibody Hulys11 Fv/Lysozyme 224 129
1DQJ 1DQQ 3LZT Hyhel - 63 Fab/Lysozyme 215 129
1EO8* 1EO8 2VIR Bh151 Fab/Hemagglutinin 219 267
1FBI* 1FBI 1HHL IgG1 Fab fragment/Lysozyme 226 129
1JHL* 1JHL 1GHL IgG1 Fv Fragment/Lysozyme 224 129
1MEL* 1MEL 1LZA Vh Single-Domain Anti-

body/Lysozyme
132 127

1MLC 1MLB 1LZA IgG1 D44.1 Fab fragment/Lysozyme 220 129
1NCA* 1NCA 7NN9 Fab NC41/Neuraminidase 221 388
1NMB* 1NMB 7NN9 Fab NC10/Neuraminidase 229 388
1WEJ 1QBL 1HRC IgG1 E8 Fab fragment/Cytochrome C 220 104
2JEL* 2JEL 1POH Jel42 Fab Fragment/A06 Phospho-

transferase
228 85
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Table 2. Results obtained for the test set. We list the PDB code of each complex,
results for bound cases, level of penetration in the unbound complexes superimposed
on bound and results for the unbound cases. a Best RMSD(Å) result. In the brackets
is its rank in the list of the results for the patch it was found in. b Best ranking of the
result with RMSD under 5Å among all the results. c Maximal penetration between the
surfaces in Å. d Number of residues that penetrate the surface with distance greater
than 2.2Å for receptor and ligand respectively. e The running time of matching and
scoring step for the unbound cases.

Bound cases Penetrations in
unbound

Unbound cases

PDB
code

RMSD(Å)
(patch
rank)a

Best
rankb

penetration
distancec

# of
residuesd

RMSD(Å)
(patch
rank)a

Best
rankb

CPU
(min)e

1ACB 1.05(23) 1 2.43 2,0 1.12(34) 10 59:48
1AVW 0.82(1) 1 2.79 7,3 1.92(223) 330 55:11
1BRC 1.07(96) 1 4.76 7,0 4.76(168) 179 15:10
1BRS 0.66(1) 1 2.79 3,1 3.19(85) 143 24:09
1CGI 1.21(2) 1 3.30 4,4 1.74(338) 135 21:06
1CHO 1.77(198) 2 3.28 7,0 1.25(4) 5 14:25
1CSE 1.43(1) 1 2.99 3,0 1.76(478) 603 28:34
1DFJ 1.84(15) 15 4.81 16,9 7.04(10) - 35:16
1FSS 2.35(115) 4 3.14 5,7 1.64(360) 142 32:38
1MAH 0.71(2) 1 3.25 6,2 2.47(24) 736 21:07
1PPE* 0.98(1) 1 2.18 0,0 0.96(1) 1 07:31
1STF* 0.56(1) 1 1.94 0,0 1.32(1) 1 30:39
1TAB* 1.63(21) 1 2.62 1,0 1.72(35) 81 07:01
1TGS 0.71(2) 1 4.30 8,5 2.82(445) 573 17:17
1UDI* 1.35(2) 1 3.02 2,4 1.83(6) 73 20:33
1UGH 0.84(1) 1 3.31 6,8 2.48(151) 44 17:06
2KAI 0.89(2) 1 4.67 14,10 3.21(235) 224 20:59
2PTC 0.74(3) 1 4.07 9,2 1.86(222) 10 13:45
2SIC 1.49(3) 3 2.91 7,6 1.30(6) 122 29:59
2SNI 2.22(1) 1 5.64 12,5 6.95(392) - 14:09
2TEC* 0.93(27) 1 2.61 1,0 0.77(29) 241 31:29
4HTC* 1.76(3) 1 2.72 2,2 1.54(1) 1 09:04
1AHW 0.83(1) 1 3.02 4,3 1.73(98) 8 52:06
1BQL* 0.96(3) 1 2.30 0,0 0.66(1) 1 22:51
1BVK 1.32(10) 1 2.01 0,0 2.91(185) 577 08:37
1DQJ 1.32(1) 1 4.08 12,13 5.24(244) - 20:56
1EO8* 1.19(1) 1 2.75 3,4 2.27(168) 1071 33:22
1FBI* 1.46(2) 1 4.01 7,1 1.05(228) 282 20:41
1JHL* 1.30(167) 3 1.94 0,0 2.91(134) 274 27:01
1MEL* 1.45(2) 1 2.39 1,0 1.20(3) 2 07:30
1MLC 1.17(112) 3 4.23 7,9 3.10(397) 689 15:55
1NCA* 1.69(1) 1 1.74 0,0 1.92(16) 43 20:30
1NMB* 2.79(17) 17 1.40 0,0 2.07(44) 218 15:09
1WEJ 1.47(11) 11 2.16 0,0 2.09(260) 417 16:06
2JEL* 3.67(4) 4 2.38 3,0 3.37(45) 112 08:39
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4 Conclusions

We have presented a novel and highly efficient algorithm for docking of two
molecules. While here we have shown results obtained by applying the algo-
rithm to the docking of two protein molecules, the algorithm can be applied to
receptor–drug cases as well (not shown here). The attractive running times of
the algorithm and the high quality of the results compared to other state of the
art method [26,12,3] are the outcome of several components. First, the algorithm
divides the molecular surface into shape-based patches. This division addresses
both the efficiency and at the same time, distinguishes between residue types
(polar/non-polar) in the patches. Further, we make use of residue hot spots
in the patches. Second, the method utilizes distance transform to improve the
shape complementarity function. Third, it implements faster scoring, based on
multi-resolution surface data structure. Our improved shape complementarity
function further contributes to the quality of the results. While here the docking
is rigid, the utilization of the last three components enables us to permit more
liberal intermolecular penetration (up to 5 Å here).
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Appendix

Distance Transform Grid

Distance transform grid is a data structure for efficient queries of type distance
from surface. The molecule is represented by a 3D grid, where each voxel (i, j, k)
holds a value corresponding to the distance transform DT (i, j, k). There are three
types of voxels: surface (MS surface point maps to the voxel), interior (inside
the molecule) and exterior (outside the molecule). The distances are zero at the
surface voxels and change as the distance from the surface increases/decreases.
The distance transform is negative for inside molecule voxels and positive for
outside voxels.

Supported Queries.
– distance from surface: Given a point p, we access the grid with its coordinates

and return a value of the voxel corresponding to the point. Clearly this query
consumes O(1) time.

– shape function and volume Normal: A sphere of radius R is placed at a given
point p. We count the ratio of negative grid voxels inside the sphere and the
total number of sphere voxels. The volume normal is computed in the same
manner. We compute the gravity center of the positive grid voxels inside the
sphere. This sets the direction of the normal.

Multi-resolution Surface

In order to support fast geometric scoring and filtering of the transformations,
we construct multi-resolution data structure for the ligand’s surface dots. We
build a surface tree, where each layer represents the ligand surface at a different
resolution. This data structure allows us to work with very high MS surface
density and to reduce greatly the number of queries in the receptor distance
transform grid. The main idea is that if the point falls outside the interface,
there is no need to check where the adjacent points fall.

Supported Queries.
– isPenetrating: Given a transformation and a penetration threshold we check

whether the surface points of the ligand penetrate the surface of the receptor
with more then the given threshold.
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– maxPenetration: Given a transformation find the maximum surface penetra-
tion.

– score: Given a transformation and a list of ranges, the goal is to count the
number of lowest level surface points in each range.

– interface: Selects the interface surface points for a given transformation. The
output is all the nodes with the distance transform value less then interface
threshold.

All the queries employ the DFS search with iterative implementation using a
stack. The complexity of the queries is proportional to high level size + interface
size.
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