PROTEINS: Structure, Function, and Bioinformatics 58:618—627 (2005)

FAST: A Novel Protein Structure Alignment Algorithm

1,2:%

Jianhua Zhu' and Zhiping Weng

1Bioinformatics Program, Boston University, Boston, Massachusetts
2Biomedical Engineering Department, Boston University, Boston, Massachusetts

ABSTRACT We present a novel algorithm
named FAST for aligning protein three-dimensional
structures. FAST uses a directionality-based scor-
ing scheme to compare the intra-molecular residue-
residue relationships in two structures. It employs
an elimination heuristic to promote sparseness in
the residue-pair graph and facilitate the detection
of the global optimum. In order to test the overall
accuracy of FAST, we determined its sensitivity and
specificity with the SCOP classification (version
1.61) as the gold standard. FAST achieved higher
sensitivities than several existing methods (Da-
liLite, CE, and K2) at all specificity levels. We also
tested FAST against 1033 manually curated align-
ments in the HOMSTRAD database. The overall
agreement was 96%. Close inspection of examples
from broad structural classes indicated the high
quality of FAST alignments. Moreover, FAST is an
order of magnitude faster than other algorithms
that attempt to establish residue-residue correspon-
dence. Typical pairwise alignments take FAST less
than a second with a Pentium III 1.2GHz CPU. FAST
software and a web server are available at http:/
biowulf.bu.edu/FAST/. Proteins 2005;58:618-627.
© 2004 Wiley-Liss, Inc.

Key words: protein structure alignment; clique de-
tection; clustering-based algorithm; sen-
sitivity; specificity; alignment quality

INTRODUCTION

The rapid accumulation of protein three-dimensional
(3D) structures in the Protein Data Bank! (http:/www.
resb.org/pdb/) has made structure comparison an indispens-
able bioinformatics tool for studying protein function and
evolution.?? The goal of structure comparison is to relate
proteins based on their structural similarity. It is well
known that remote protein homologs may have unrecogniz-
able sequence similarity while their 3D structures are still
highly conserved.*® Thus structure alignment algorithms
can detect equivalencies that purely sequence-based meth-
ods can not.

Many approaches to structural comparison have been
proposed, roughly falling into two categories: superposi-
tion and clustering.® All methods must identify equivalent
residue pairs in two proteins; however, methods in the two
categories differ in their approaches to quantifying the
equivalency. Superposition-based algorithms translate and
rotate one protein structure in the 3D space to minimize
its intermolecular distance to another protein struc-

© 2004 WILEY-LISS, INC.

ture.”'° Clustering-based methods, in contrast, compare
and cluster intramolecular residue-residue distances in
one protein with those in another protein. Various heuris-
tics have been developed for the latter approach,''~'*
because the general problem is NP-hard.®

Despite the plethora of existing algorithms, the protein
structure alignment problem is not yet solved. Gerstein
and Levitt reported that structure alignments frequently
lacked convergence.® Finding biologically relevant similari-
ties remains another challenge. To tackle the substantial
computational complexity, “slow and reliable” algorithms
establish residue-residue correspondence between two
structures, while “quick and dirty” algorithms supply
coarse alignments using Secondary Structure Elements
(SSEs; namely a-helices and B-strands). Some algorithms,
in an effort to narrow down the search space and speed up
residue-level alignments, first perform SSE alignments to
filter out dissimilar proteins.?'¢~'® Unfortunately, this
approach suffers from the relatively low accuracy of SSE
alignments and in some cases the failure to produce an
SSE alignment due to the lack of SSEs in the input
structures.

Here we report a novel structure alignment algorithm
named FAST (a recursive acronym of FAST Alignment
and Search Tool). Because it is extremely difficult to
recover from inaccurate SSE alignments, we decided to
work directly with protein backbones represented as chains
of C_, atoms. According to the classification by Eidhammer
et al.,° FAST is a clustering-based algorithm. Unlike
previous methods in this category, which cluster compat-
ible residue-pairs into candidate alignments, FAST em-
ploys various novel techniques to eliminate incompatible
residue-pairs and reduce computational complexity. Al-
though FAST does not explicitly assign secondary struc-
tures, it detects local backbone geometry and produces
biologically meaningful alignments. We evaluated FAST’s
performance in two ways. We measured its overall sensitiv-
ity and specificity of determining whether two proteins can
be aligned using the manual SCOP classification of protein
folds.'® For the accuracy of detailed alignments, we tested
FAST against all curated structural alignments in HOM-

Grant sponsor: the National Science Foundation; Grant number:
DBI-0078194.

*Correspondence to: Zhiping Weng, Biomedical Engineering Depart-
ment, Boston University, 44 Cummington Street, Boston, MA 02215.
E-mail: zhiping@bu.edu

Received 26 February 2004; Accepted 28 July 2004

Published online 17 December 2004 in Wiley InterScience
(www.interscience.wiley.com). DOI: 10.1002/prot.20331

FAST: PROTEIN STRUCTURE ALIGNMENT ALOGRITHM

A.
1 1
Protein A 2 2 Protein B
3
3
4
B.
Pair Graph
Fig. 1. Schematic illustration of pair graph for structure alignment. A:

Two proteins each with four residues. Each residue is represented by its
C,, atom (open circle), and a simplified bond connecting neighboring C_
atoms. B: The pair graph corresponding to the two proteins in A. Each
vertex indicates a residue pair. (1,1’) indicates the pairing of residue 1 of
protein A with residue 1’ in protein B, and so on. Each edge connects two
compatible residue pairs. For example, the edge connecting (2,1') and
(4,3") indicate that the Euclidian distance between residues 2 and 4 in
protein A is of similar length to that between residues 1’ and 3’ in protein
B. Cliques in the pair graph indicate alignments. There are six cliques in
the graph. For example, clique [(2,1"), (3,2"), (4,3")] indicates the align-
ment between residues 2, 3, 4 of protein A and residues 1’, 2', 3’ of
protein B.

STRAD.?° Both comparisons illustrated FAST’s superior
performance over several other methods.

FAST, as its name suggests, is especially appealing
because of its speed. On a Linux computer with a Pentium
IIT 1.2 GHz CPU, a typical pair-wise alignment takes less
than a second, an order of magnitude faster than all other
residue-level alignment methods that we are aware of.
Thus, FAST is a promising tool for scanning large struc-
ture databases to detect remote homologs that are elusive
for sequence search tools. In this paper we focus on its
algorithmic details and alignment quality, and leave a
full-fledged structure search engine for the topic of future
articles.

METHODS
Optimization Strategy

The problem of searching for the optimal alignment
between two protein structures can be formulated as
finding the maximal clique in a pair graph (Fig. 1), in
which vertices represent possible pairings between C,_
atoms from the two structures and edges denote compatibil-
ity between such pairs. Figure 1(B) illustrates the pair
graph for proteins A and B in Figure 1(A), each with four
residues. In this graph, an edge is drawn if the difference

619

| Local Geometric Comparison |

| Construct Pair Graph |

s — —

| Etiminate Bad Pairs | €——

No

|
|
Step 3 |
|
|

No

Final Alignment

Fig.2. The flow chart of FAST. The algorithm contains four steps. See
the Methods section for more details.

Yes

Step 4

between the intra-molecular distances between two resi-
due pairs is smaller than a cutoff. Compatibility can also
be defined in many other ways and weights can be
assigned to edges to signify the degrees of compatibility.®
There are six cliques in Figure 1(B), each representing a
possible structural alignment. We hereafter denote the
pair graph with G(V,E) where V and E are vertex and edge
sets respectively. We also use the terms vertex and pair
interchangeably. A collection of vertices in E can corre-
spond to an alignment if the residue indices within a
protein are not reused (because one residue in one protein
can only be aligned with one residue in the other protein).
If sequential constraint is also imposed, all residue indices
of one protein must be in ascending (or descending) order
after the residue indices of the other protein have been
sorted accordingly. The six cliques in Figure 1(B) satisfy
both requirements.

It is well-established that the maximum clique detection
problem is NP-hard.® For protein structure comparison,
the situation is particularly severe due to the large size of
the pair graph. For two proteins with M and N residues
respectively, the number of vertices in the pair graph is
MN, which is in the order of 10° for average-size proteins.
To tackle this problem, we use a combination of empirical
rules to reduce the size and density of G(V,E), until a
reasonable approximation is possible.

FAST comprises four steps (Fig. 2). First, we compare
the local geometric properties of the two proteins and
select a small subset of MN pairs as the vertex set to
construct G(V,E). Second, we assign edges by comparing
intra-molecular relationships, using a directionality-based
scoring scheme that promotes sparseness of the graph.

620

Third, we iteratively prune the graph to eliminate “bad
vertices,” which are residue pairs that are unlikely to
constitute the global optimal alignment, offering the cor-
rect alignment a better chance to survive. With the
substantially simplified product graph, an initial align-
ment is easily detected using dynamic programming.
Finally, we fine-tune the initial alignment by finding
additional equivalent pairs and eliminating bad pairs.

Step 1: Local Geometric Comparison

Local geometric comparison serves as a filter for finding
residue pairs. It is performed with a similarity function of
two five-residue segments. L; denotes the similarity be-
tween a segment centered around residue i of protein A
and a segment centered around residue j in protein B:

o A B A B
Lij = min {D(di—z,Hz s dj—2,j+2), D(di—z,iﬂ , dj—z,jﬂ)

D(d; iros d;- 1,j+23)}’ D

where D(dy, d,) = 0.1 — |dy — dJ| / (dy + ds).

d; 5.4 indicates the Euclidian distance between C_ atoms
i—2 and i+2 in protein A and likewise for five other such
distances [they are indicated with dashed lines in Figure
3(A)]. The first two and last two residues of a protein chain
are left out of the calculation because they do not have two
neighboring residues on each side.

We then prune G(V,E) in favor of consecutive and
high-scoring segments: (a) Pairs with negative L scores are
eliminated. (b) Pairs with isolated high L scores, i.e., those
that cannot form a stretch of four high-scoring pairs, are
also eliminated.

Typically more than 90% pairs are purged without
substantially affecting the correct alignment. Even though
we do not explicitly consider secondary structures, a
residue in an a helix would never be paired with a residue
in a B strand because of their distinct local geometric
patterns. Thus, FAST implicitly accounts for secondary
structure information.

Step 2: Scoring Scheme for Edge Computation

The edge in G(V,E) connecting two vertices (i,j) and
(m,n) is assigned the following weight:

€ijmn = (1 — max {ky gk, ty,ke ta,ky t,}) exp

(1))
2d0

where t; = |d;,* — d;,2/(d;,* + d;,.5),

, (2)

tu = max{|aal - a,l|’|a*1 - 0‘/*1|}7
tg = max{|B; — B'1,|B-1 — B'_4l},

¢, = max{ly; — v'1l,lv-1 = v -lh,

As in Equation 1, d;,* in Equation 2 indicates the
Euclidian distance between C_, atoms i and m in protein A
and d;,® between C, atoms j and n in protein B. The
distance term ¢, and the exponential decay envelope are

J.ZHU AND Z. WENG

A. i-1 i+1
— —
T - === Protein A
i-2 i i+2
“ Ly
H j+1
—
— i Protein B
2] jt2
B. i m+1
+1)'
i+1 s (i+1)
; B
| D-femmemnnne-- oly i b Protein A
i-1 m-1
i+
------- Protein B

j-1

i+1

i Cy
i-1 £

Fig. 3. FAST scoring scheme. Each residue is represented by its C_
atom (open circle). Solid lines connect neighboring C_ atoms. A: Local
geometric compatibility is defined as a function of six Euclidian distances
(Equation 1). These distances are indicated with dashed lines in this
figure. B: The weight of an edge is defined as a function of two Euclidian
distances and twelve angles (Equation 2). The dashed lines in the figure
correspond to the two distances. They are extended to facilitate the
illustration of the angles. «; is the angle between the vector that connects
C, atoms iand i+1 and the vector that connects C_ atoms jand m. Other
« and B angles are defined similarly. Angle v, is defined between the
vector that connects C_, atoms m and m+1 and the vector that connects
C, atoms m and (i+1)’, with the latter being the projection of atom i+1
such that the m-(i+1)’ vector is parallel to the i-(i+1) vector. C: Side-chain
orientation defined by angles 8 and e. C_ atoms are indicated with open
circles and the C,; atom of residue /is indicated with an open square.

adopted from the elastic score by Holm and Sander.'®> We
introduce three additional terms, #,,, ¢, and ¢., to measure
similarity in backbone directionality, described with six
angles ay, By, v, @1, B_; andy_, in Figure 3(B). kg, &, kg,
a}nd k., are empirically determined scaling factors (k; = 10
Ak, = kg = 4/mrad and ky = 3/ rad).

Careful considerations went into the directionality terms
in Equation 2. Congruence of backbone directions is fre-
quently observed in structurally conserved regions, due to
the regularity of SSEs. With directionality constraints, our
scoring scheme substantially reduces the density of G(V,E).
In addition, backbone directionality correlates well with
side-chain orientation. As illustrated in Figure 3(C), the

FAST: PROTEIN STRUCTURE ALIGNMENT ALOGRITHM

TABLE I. Correlation Between Backbone Direction and
Side-Chain Orientation

Angles® d 3
Mean 111.15° 121.47°
Standard Deviation 1.27° 0.80°

“Angles 8 and & characterize side-chain orientation, as defined in
Figure 3(C). Statistics are obtained with all nonterminal nonglycine
residues in 4772 SCOP structures sharing less than 40% sequence
identity.

vector connecting the C, and C; atoms of a residue can be
defined with two angles 8 and e. Table I indicates that &
and e are highly invariant among all nonterminal, nongly-
cine residues in 4772 SCOP structures sharing less than
40% sequence identity. Gerstein and Levitt reported that
C; coordinates were needed for correctly aligning some
difficult cases.® Our directionality terms implicitly take
side-chain orientations into account.

With the above defined vertices and edges for G(V,E),
the total similarity score for alignment X is

SX = E eij;mn (3)

(i)eX;(m,n)eX;(m,n)#(i,j)

and the optimal alignment X* should achieve the maximal
similarity score.

Step 3: Further Pruning and Initial Alignment

An edge with a positive weight supports the coexistence
of two residue pairs in some alignment. If we sum all
positive weights of edges associated with vertex (i,j), and
call this the total score (T') of the vertex (Equation 4), we
would expect T to be high if (i,j) is contained in the optimal
alignment X*.

T; = E max{e;,,,0} (4)

(m,n)eV

Unfortunately the converse is not necessarily true,
because all alignments that contain (i,j) contribute to 7.
We have devised a strategy to iteratively eliminate verti-
ces that are most unlikely to be part of X*. Without the
contributions from such bad vertices, hopefully X* be-
comes apparent in the 7' matrix. The success of this
strategy relies on a sparse graph. Three empirical rules
are used to define bad pairs: (a) A vertex receiving a low 7'
score is eliminated. The actual threshold is given by a
percent cutoff. The default is to remove 10% low-T vertices
in each row and each column of the T;; matrix. (b) If the T
score of a vertex is due to scattered contributors that do not
form stretches, the vertex is eliminated. (¢) If the two
residues of a vertex are isolated, i.e., their neighboring
residues are no longer in G(V,E), the vertex is eliminated.

In order to measure the extent to which the graph is
close to a clique, we define the degree of unanimity of
G(V,E) as the number of edges with positive weights
divided by the total number of possible edges. We expect
the degree of unanimity to increase as we iteratively
eliminate more bad vertices. The process terminates when
there is no further improvement in unanimity. There are

621

T T L T T T

04 | 1
p —_— x=2.559-§-1.540
---- EVD

03 | -
02 | .
ol } .

0 P ' L
4 2 0 2 4 6 8 10

Fig. 4. The fit of an Extreme value distribution (EVD; dashed line) to
normalized scores S (solid line). It is obtained by aligning 1,000,000 pairs
of dissimilar structures (different SCOP folds). The dashed line is the
standard EVD with probability density function p(x) = e™ - e©". The
distribution of S is best fitted to EVD by the relationship x = 2.559*S
— 1.540.

two possibilities at this point: (a) All singletons and
insignificant local maxima have been eliminated and the
global optimum is dominant. (b) Sometimes a tie is reached
among multiple comparable maxima. This is often the case
when one or both structures contain repeats.

For case (a) an initial alignment X° can be easily
identified by running dynamic programming®" with 7, as
the similarity score and zero gap penalty. For case (b),
which is often reflected by a low degree of unanimity that
cannot be improved by further pruning, we must break the
tie to retrieve the most significant alignment. Because the
search space is sufficiently reduced at this point, we split
the graph using a vertex with large 7" as the pivot. Vertices
incompatible to the pivoting vertex are discarded. The
remaining sub-graph is then subjected to further pruning
until case (a) is reached. At most three pivots are tried and
the best alignment is kept.

Step 4: Alignment Refinement

The initial alignment X° may contain residue pairs that
do not belong to the optimal alignment and some biologi-
cally relevant pairs may be dropped during pruning. We
try to improve X? by recovering additional relevant pairs
and removing bad pairs. Given X?, the compatibility of a
residue pair (i,)) is defined as:

i E

(m,n)eX%; (m,n)#(,J)

R eij;mn (5)

The first round of improved alignment X” can be con-
structed by running dynamic programming®' with R,; as
the similarity score and zero gap penalty. The process is
performed for up to five rounds, with a new R matrix and
updated alignment constructed each time, or until the
alignment converges. Obviously, the total similarity score
upon convergence is exactly the target function defined in

J.ZHU AND Z. WENG

TABLE II. Sensitivities at Various Specificity Cutoffs

1 1 /J_.—-"‘ \
L //-*/"'J Number of false Number of true positives
positives (Sensitivity)
(Specificity) FAST DaliLite K2 CE
1500 62979 57605 49073 33654
(99.5%) (61.70%) (56.43%) (48.07%) (32.97%)
3000 72443 67060 56704 41504
el (99%) (70.97%) (65.70%) (55.55%) (40.66%)
A dlcs6a3 5 6000 80083 75816 63536 50981
' : (98%) (78.45%) (74.27%) (62.24%) (49.94%)
P % 15000 87300 84505 71308 65274
(95%) (85.52%) (82.719%) (69.86%) (63.95%)
\ 30000 91241 88905 76404 75659
(90%) (89.38%) (87.10%) (74.85%) (74.12%)
\ 60000 94684 92085 80690 85424
\ \ (80%) (92.76%) (90.21%) (79.05%) (83.69%)
N\ i
C . NP N, extreme value distribution (EVD), which allows us to
compute statistical significance in a way similar to the
. i BLAST P-value.?? Figure 4 indicates the good fit of an
R EVD to the S scores of aligning 1,000,000 pairs of dissimi-
S lar structures.
N\ Algorithm Implementation and Availability
N\ \\ FAST was implemented in ANSI C on a personal
e \ computer running Linux and has been ported to several
E “~|F ~ other platforms including SGI/IRIX, Alpha64 and IBM SP.
' : It is self-contained and fully automated. For consistency

Fig. 5. Aligning d1bhgal and d1cs6a3. A: The 3D structures of the
two proteins with B-strands indicated in block arrows. B: Superposed
backbones with aligned regions highlighted in thick lines, d1bhga1 in red
and d1cs6a3 in blue. A and B were generated with MOLSCRIPT®® and
RASTERS3D.®* C: The first T score matrix (Equation 4) following local
geometry comparison. Protein d1bhga1 (103 residues) is placed vertically
and d1cs6a3 (91 residues) is placed horizontally. The intensity of each
pixel represents the T score of the corresponding residue pair. The pixels
with T scores lower than the default cutoff are omitted. D: The T score
matrix after three rounds of pruning (see Step 3 of the FAST algorithm in
the Methods section). E: The T score matrix after nine rounds of pruning.
One alignment becomes dominant. F: The initial alignment (blue and
black pixels) and the final refined alignment (red and black pixels).

Equation 3. As the final step, the alignment is trimmed by
discarding pairs that do not form a stretch of four or more
aligned residue pairs.

Score Normalization and Statistical Significance

The raw score defined by Equation 3 indicates the
overall similarity between two protein structures. Al-
though capable of capturing the optimal alignment, it is
not ideal for determining whether an alignment is signifi-
cant, because large proteins are more likely to produce a
high-scoring alignment purely by chance. We use a simple
normalization scheme:

S = (6)

where M and N are numbers of residues in the two
proteins. The normalized score S approximately follows an

and simplicity, we do not allow any case-by-case parame-
ter modification. A single set of built-in parameters is used
throughout. FAST is freely available to academic users at
http://biowulf.bu.edu/FAST/. A submission form is also
provided for pair-wise alignment over the Web.

RESULTS AND DISCUSSION
An Example

Figure 5 illustrates the process of aligning dlbhgal
(PDB code 1BHG, A chain, residues 226-328) and d1cs6a3
(PDB code 1CS6, A chain, residues 209-299), both belong-
ing to the immunoglobulin-like B-sandwich SCOP fold.'?
Structures in this fold are challenging for alignment
algorithms because of the large number of local maxima
(the two B-sheets can be aligned either way and B-strands
can slide against each other, resulting in many high-
scoring alignments). Furthermore, this fold can accommo-
date many sequences as well as great structural variation.
The optimal alignment between dlbhgal and dlcs6a3
[Fig. 5(B)] shows high variation in loops and the ends, and
some variation even in the core of the fold.

Figure 5(C) indicates the 7" matrix (103 by 91 residues)
at the beginning of Step 3 (Methods). There are many
high-scoring diagonals in Figure 5(C), indicating the large
number of local maxima. The T matrices after three and
nine rounds of pruning are shown in Figures 5(D) and 5(E)
respectively. All local maxima have been eliminated by
round 9, and only one alignment is dominant [Figure 5(E)].
This alignment indeed corresponds to the global optimal
alignment [Fig. 5(F)].

FAST: PROTEIN STRUCTURE ALIGNMENT ALOGRITHM

623

TABLE III. Total/Average Running Time on the SCOP Data Sets (in seconds)’

Method FAST DaliLite K2 CE
Positive Set (102,077 pairs) 53760/0.53 1360140/13.32 798660/7.82 337920/3.31
Negative Set (300,000 pairs) 63240/0.21 2093520/6.98 300480/1.00 310380/1.03

"Running time is measured by the wall time used by a Pentium III 1.2 GHz CPU.

This example illustrates that the multiple-step pruning
heuristic of FAST is highly effective in removing the
residue pairs that are not part of the global optimum. The
resulting pair graph is sparse and therefore it is relatively
easy and rapid to detect the correct alignment. This
alignment takes only 0.11 seconds using a single Pentium
11T 1.2GHz CPU.

Overall Accuracy

Gerstein and Levitt pointed out the importance of using
manual standards to assess the performance of automated
alignment algorithms.® They tested their algorithm against
2107 pairs of SCOP proteins. We shared the same philoso-
phy but switched to a much larger data set: SCOP version
1.61'? that covered the entire Protein Data Bank.* To test
FAST on the most difficult cases, we chose a nonredundant
set of 4772 structures sharing less than 40% sequence
identity as provided by the ASTRAL compendium.?® These
were all single-domain proteins defined by SCOP, with an
average length of 181 amino acids. We determined the
sensitivities at various specificities using all 102,077 same-
fold pairs as the positive set and 300,000 randomly chosen
different-fold pairs as the negative set.

For comparison we ran several other structure align-
ment algorithms on the same dataset. There were two
limiting factors for selecting other algorithms: the availabil-
ity of the software, and the speed of the software to cope
with the large data set. Our final list included DaliLite,?*
CE,?% and K2.1"1® DaliLite (an offline version of DALI) is a
branch-and-bound clustering-based algorithm. A number
of approximations are introduced to cope with the combina-
torial complexity and Monte Carlo optimization is per-
formed to refine the alignment in the entire search space.
CE builds structure alignment by incremental combina-
tional extension of optimal paths. A list of aligned frag-
ment pairs is first identified. The optimal alignment path
is built up by combining aligned pieces, followed by a
dynamic programming refinement. K2, developed earlier
by our lab, exemplifies a hierarchical alignment strategy.
Because proteins are most conserved in cores as repre-
sented by secondary structures, K2 first generates an SSE
alignment. A genetic algorithm is then used to optimize
the alignment at the residue level.

Table II summarizes the comparison of FAST, Dalil.ite,
CE, and K2. FAST and DaliLite are more accurate than
the other two methods. At reasonable specificities (95—
99%), the overall sensitivity of FAST is 3-5% above
DaliLite and more than 10% higher than K2 and CE.
Analysis of false-negatives indicated that the major issue
of K2 resided in the SSE alignment stage. The quality of
SSE alignment was limited by a number of factors, such as

the accuracy of SSE assignment and the availability of
sufficient SSEs to work with. As a result, K2 had difficulty
with small proteins and structures with low SSE content.
To avoid unreliable SSE alignments was in fact one of our
motivations for developing the FAST algorithm.

Even at the low specificity of 80%, the two best methods,
FAST and DaliLite, could not detect all pairs of structures
designated by SCOP to be in the same fold (the sensitivi-
ties were 93% and 90% for FAST and DaliLite respec-
tively). We therefore decided to investigate the worst
cases, referred to as same-fold pairs that were assigned
extremely poor scores by one or both of these two pro-
grams. The cutoff we chose for DaliLite was Z-score = 0
(i.e., no alignment generated at all), which corresponded to
a specificity of 67%. DaliLite assigned zero Z-scores to 8056
same-fold pairs. FAST computed S below the equivalent
threshold of 0.881 for 5098 same-fold pairs. We asked
whether one method could correct the errors of the other
method by assigning a score above the method’s 95%
specificity cutoff. We found that 2242 of the worst 8056
same-fold pairs defined by DaliLite were corrected by
FAST and 783 of the 5098 FAST cases were corrected by
DaliLite. Therefore, the two methods complemented each
other in coping with some of the most difficult cases.

Some difficult cases reported by DaliLite were due to
problematic structures. Among the 4772 structures, 37
had multiple chains and 12 had C_ atoms only. DaliLite
failed on all cases that involved one of these 49 structures.
This accounted for 1252 out of the 102,077 same-fold pairs
and 6008 out of the 300,000 different-fold pairs. The 8056
worst cases include all 1252 cases, out of which 977 were
corrected by FAST, indicating that problematic input
structures had little impact on FAST’s performance.

Both DaliLite and FAST failed on 3081 (approximately
3%) extremely difficult cases. Small proteins appeared to
be a major problem. There were 1944 or about two-thirds
of the above extremely difficult pairs between proteins
shorter than 80 residues. Others involved proteins of
permuted SSEs or different topologies. One example is
d1byi__ vs. d1lghla_, both belonging to the “P-loop contain-
ing nucleotide triphosphate hydrolases” fold. However, the
B sheet in dlbyi__ is parallel and that in dlgha_ is
anti-parallel. Both FAST and DaliLite enforce strict se-
quential constraints and are thus unable to detect such
similarities.

False positives by FAST were mostly due to common
substructures shared by proteins with different overall
structures. Others represented surprising similarities
across different SCOP folds. There were numerous ex-
amples among the top 200 false positives. The example
below is not chosen from top 200 false positives; however,

624 J.ZHU AND Z. WENG

the similarity is still remarkable. SCOP entry d1e79d2
(PDB code 1E79, chain D, residues 9—81) belongs to the
“domain of « and B subunits of F1 ATP synthase-like” fold
(SCOP ID b.49.1.1, described as barrel, closed; n = 6, S =
8; Greek-key). Its structure is superposable on SCOP
structure dlg7sal (PDB code 1G7S, chain A, residues
228-328), which belongs to the “reductase/isomerase/
elongation-factor common domain” fold (SCOP ID b.43.3.1,
described as barrel, closed; n = 6, S = 10; Greek-key).

Computational Efficiency

The SCOP data set (402,077 pair-wise alignments)
requires considerable computing power. We carried out
the calculation in parallel using a Linux computer cluster
that consisted of 128 computing nodes, each with two 1.2
GHz Pentium III CPUs and 4 GB RAM. The entire data set
was divided into 84 groups and assigned to 42 compute
nodes. Table III compares the speeds of the four methods.
We measure running time for the positive set and the
negative set separately because it heavily depends on the
average number of aligned residues. On both data sets
FAST was much faster than other methods, about 30 times
faster than DaliLite and 5-10 times faster than K2 and
CE. The average time for aligning a pair of similar/
dissimilar structures using FAST was 0.51/0.21 seconds.

Alignment Quality

For an automated structure alignment algorithm, it is
important to investigate whether it produces biologically
meaningful alignments. This is especially important for
FAST because we do not use any secondary structure
information, or perform rigid-body superposition of the
two structures. Generating high-quality alignments is a
challenging problem and biologically meaningful align-
ments are often barely distinguishable from local maxima
in terms of alignment length or the root-mean-square
deviation (RMSD) of the structures superposed at aligned
residues.?®

We compared automated alignments by FAST with
manually curated alignments in the HOMSTRAD data-
base.?® As of March 2003, HOMSTRAD contained anno-
tated alignments of 1033 homologous protein families. For
each family in the database, we ran FAST between each
pair of proteins and tallied matches and discrepancies
compared to the corresponding manual alignment. In
aligned regions, FAST agreed with HOMSTRAD for 96%
residue pairs. In particular, they were in perfect agree-
ment for 332 out of the 1033 families. Thus, FAST reliably
generates biologically correct residue pairs in a human
expert’s point of view. Detailed analysis identified two
types of discrepancies: (1) most mismatches resided in loop
regions where structures were highly variable; (2) misalign-
ments in cores were usually characterized by shifts in
SSEs.

We provide examples across broad structural classes in
Table IV. The FAST alignments invariably had fewer
residue pairs and lower RMSDs than the corresponding
manual alignments. On average, FAST alignments were
7% shorter than the corresponding HOMSTRAD align-

1.2
11
2.0
2.0
1.7
2.3
1.9
2.2
15
1.8
1.7

55%
99%
89%
99%
98%
97%
100%
93%
97%
97%
97%

FAST!
Match RMSD

Length
55(29)
255(170)
187(82)
98(15)
343(119)

284(77)
28(12)
40(10)

214(74)

323(86)

546(198)

15
11
2.0
2.2
1.9
2.6
1.9
2.0
1.6

2.5
1.8

0%
99%
97%
97%
90%
88%
83%
98%
96%
91%
96%

DALI®
Match RMSD

Length
57(2)
258(173)
189(83)
105(15)
376(124)
323(81)
29(10)
43(11)
220(75)
367(95)
575(201)

11

11
2.2
3.0
3.1
2.1
1.8
3.1
2.1

2.1
2.1

FATCAT?
Match RMSD

0%
100%
98%
97%
87%
84%
93%
98%
95%
91%
95%

Length
57(8)
258(172)
186(83)
105(15)
395(122)
333(77)
30(11)
43(11)
222(73)
379(96)
585(199)

25
11
4.3
2.2
5.6
3.6
24
1.7
4.6
2.3

HOMSTRAD®
RMSD

57(21)
258(173)
192(86)
105(15)

33(13)

43(12)
220(75)

Length
403(127)
330(81)
377(102)
582(200)

TABLE IV. Comparison of FATCAT, DALI, FAST, and HOMSTRAD Alignments

Structure class®

All

+B

o/B
Small Disulphide

All o

at+f

o/B Barrel
Small Protein
Membrane All «
Membrane All B
Multi-domain

o

1lhgba 19-281
1b63a 217-331
lew2a 1-479
2tmda 1-340
lica 140

1fbr 1-46

lirea 2-204
1c3wa 5-231

1a0t 71483
111a 2-628

1qcea 1-123
‘Length indicates the number of aligned residues according to HOMSTRAD. Values in parentheses indicate numbers of identities in HOMSTRAD alignments. RMSD indicates the

root-mean-square deviation of aligned residues (according to HOMSTRAD) after superposition, obtained with a least-square fitting algorithm.** All RMSD values are in A.
to FATCAT that are also deemed equivalent by HOMSTRAD. RMSD indicates the root-mean-square deviation of aligned residues according to FAST after superposition. FATCAT alignments

9Length indicates the number of aligned residues according to FATCAT, with the number of identities indicated in parentheses. Match indicates the percentage of aligned residues according
were produced using the FATCAT web-server (http:/fatcat.ljerf.edu/fatcat/).

aThe first four characters indicate the PDB code of the structure. The fifth character indicates the chain ID whenever available. The range of residues is indicated after each PDB code.

bStructural classes are defined according to SCOP.
¢Similarly for DALI alignments. We used the DALI mail-server (http://www.ebi.ac.uk/dali/Interactive.html) to produce these alignments.

fSimilarly for FAST alignments.

1df4a 3-64
1hx8a 22-299
2ahja 4-203
1h7sa 232-364
led9a 1-449
loyc 1-339
1fjna 1-39
1tpn 1-50
lel2a 24262
laf6a 1421
1hcl 5-653

Proteins®

FAST: PROTEIN STRUCTURE ALIGNMENT ALOGRITHM

625

A,

HOMSTRAD Alignment:
2ahja: I--mmm-- DHPAQAPVSDRAWALFRALDGKGLVPDGYVEGWKKTFEEDFS PRRGAELVARAWTDPEFRQL
lirea: TENILRKSDEEIQKEITARVKALESMLIEQGILTTSMIDRMAEIYENEVGPHLGAKVVVKAWTDPEFKKR
2ahja: LLTDGTAAVAQYGYLGPQGEYIVAVEDTPTLRNVIVCSLSTAWPILGLPPTWYKSFEYRARVVREPRKVL
lirea: LLADGTEACKELG IGGLQGEDMMWVENTDEVHHVVVC TLSY PWPVLGLPPNWFKEPQYRSRVVREPRQLL
2ahja: SEM-GTEIASDIEIRVYDTTAETRYMVLPQRPAGTEGWSQEQLQEIVTKDCLIGVAIP-QV
lirea: KEEFGFEVPPSKEIKVWDSSSEMRFVVLPQRPAGTDGWSEEELATLVTRESMIGVEPAKAV

FAST Alignment:
2ahja: IDHP- - - ~AQAP- - ~-VSDRAWALFRALDGK - - - ~-GLVPDGYVEGWKK TFEEDF SPRRGAELVARAWTDPE
lirea: - ---TENILRKSDEEIQKEITARVKALESMLIEQGILTTSMIDRMAEIYENEVGPHLGAKVVVKAWTDPE
2ahja: FRQLLLTDGTAAVAQYGYLGPQGEYIVAVEDTPTLKNVIVCSLSTAWPILGLPPTWYKSFEYRARVVREP
lirea: FKKRLLADGTEACKELGIGGLQGEDMMWVENTDEVHHVVVCTLSY PWPVLGL PPNWFKEPQYRSRVVREP
2ahja: RKVLSE-MGTEIASDIEIRVYDTTAETRYMVL PQRPAGTEGWSQEQLQEIVTKDCLIGVAIPQV-~
lirea: RQLLKEEFGFEVPPSKEIKVWDSSSEMRFVVLPQRPAGTDGWSEEELATLVTRESMIGVEPAK-AV

B.

HOMSTRAD Alignment:
1dfd4a: = —mmmmmm-- IVQQONNLLRAIEAQQHLLQLTVWGIKQLQAG= == === === === === === mmmmm o= —
lqcea: AQSRTLLAGIVQQQQOQLLDVVKRQQELLRLTVWGTKNLQTRVTAIEKYLKDQAQLNAWGAAFRQVAHTTV
1dfd4a: mmmmemmm--- GWMEWDREINNYTSLIHSLIEESQN-—=—--=-—===——=—-
lgcea: PWPNASLTPKWNNETWQEWERKVDFLEENITALLEEAQIQQEKNMYELQKLNS

FAST Alignment:
1df4a: = —-meme-e- IVQQQNNLLRAIEAQQHLLQLTVWGIKQLQA- == === === === === mmmmm e
lgcea: AQSRTLLAGIVQQQQQLLDVVKRQQELLRLTVWGTKNLQ-TRVTATEK YLKDQAQLNAWGAAFRQVAHTT
1df4a: mmmmmmmmmmeee- GGWMEWDREINNYTSLIHSLIEESQN -~ -~ +-==~======
igcea: VPWPNASLTPKWNNETWQEWERKVDFLEENITALLEEAQ- IQQEKNMYELQKLNS

Fig. 6. Examples of discrepancy between FAST and HOMSTRAD (underscored). Aligned positions with identical residue are indicated with bold
letters. RMSD and other information of the alignments are listed in Table IV. A: o+ proteins 2ahja:4-203 and 1irea:2-204. B: All-a proteins 1df4a:3-64

and 1qcea:1-123.

ments. Visual inspection revealed that the missing pairs
were exclusively in loops and chain termini, where struc-
tural variation was so great that FAST left residues
unaligned to preserve maximal structural resemblance in
aligned regions. Consequently, FAST alignments had lower
RMSD. Thus, such behavior does not indicate inaccuracy
of the FAST algorithm.

Our results on aligning SCOP proteins indicated that
FAST and DaliLite were more accurate then K2 and CE
(see the Overall Accuracy section above). We thus chose to
evaluate the quality of DALI alignments for the test cases
in Table IV. We also investigated a newly developed
algorithm FATCAT,?” which was capable of incorporating
structural flexibility into the alignment. Because none of
the other algorithms considered here had this feature, we
ran FATCAT in the rigid mode, i.e., without allowing
structural flexibility. DALI and FATCAT produced align-
ments that were of similar lengths to, but with lower
RMSDs than the corresponding HOMSTRAD alignment.
FAST produced the shortest alignments accompanied by
the lowest RMSDs, except for one case (1tpn-1fbr). For the
alignment generated by each algorithm, we recorded the
percentage of aligned residues that were also deemed

aligned by HOMSTRAD (the “Match” column in Table IV).
This quantity reflects the overall quality of an alignment.
Except for two cases (2ahja-lirea and 1tpn-1fbr), FAST
achieved higher match percentages than both DALI and
FATCAT. For 1tpn-1fbr, the FAST alignment was only
slightly inferior in match percentage (93% vs. 98% for
DALI and FATCAT) and visual inspection indicated that
all disagreements located in loops. The FAST alignment of
2ahja and lirea was shifted by one turn in the N-terminal
helix, while DALI and FATCAT both agreed with HOM-
STRAD [Figure 6(A); Table IV]. Protein lirea had a long
N-terminal a-helix and FAST superposed the shorter helix
of 2ahja onto its closest counterpart in the lirea helix,
resulting in the misalignment.

For three cases, FAST produced alignments with sub-
stantially higher match percentages than both DALI and
FATCAT. The most striking case was 1df4a-1qcea, for
which both DALI and FATCAT completely disagreed with
HOMSTRAD (thus 0% match percentage), although the
RMSDs of their alignments were still small (2.1 A over 57
residues for FATCAT and 1.5 A over 57 residues for DALI,
compared with 1.2 A over 55 residues for FAST). FAST’s
match percentage was also low for this case (55%), which

626

urged us to examine the alignments carefully. Figure 6(B)
compares the alignments of FAST and HOMSTRAD, differ-
ing by a half helical turn in the underlined region. The
FAST alignment is clearly better, indicated by not only a
much lower RMSD (Table IV; 1.2 A over 55 aligned
residues, compared with 2.5 A over 57 aligned residues for
HOMSTRAD), but also higher sequence identity [29 iden-
tities for FAST and 21 for HOMSTRAD as indicated in
Table IV; identical residues in the discrepant region are
shown as bold letters in Fig. 6(B)]. DALI and FATCAT
have indeed misaligned completely, indicated by poor
sequence identities in aligned regions (eight identities for
FATCAT and two for DaliLite, compared with 29 for
FAST). For the second case (1ed9a-lew2a), both DALI and
FATCAT misaligned a variable N-terminal helix. For the
third case (laf6a-1a0t), DaliLite and FATCAT disagreed
with HOMSTRAD at several secondary structure regions.

Nonsequential and Flexible Alignments

Among the programs considered here, FAST and CE?®
can only perform sequential alignments while DALI*® and
K217-18 are also able to perform nonsequential alignments,
although at the expense of substantially greater computa-
tional complexity. DaliLite®* can only perform sequential
alignments. If used to align proteins whose equivalent
segments conform to different sequential orders, sequen-
tially constrained algorithms can only find the highest-
scoring sequential segment.

In this paper, we only consider rigid-body structural
alignment algorithms. Other algorithms can take into
account structural flexibility, either by partitioning pro-
teins into rigid domains or by introducing hinge re-
gions.?’ 3! We investigated the performance of a newly
developed flexible-alignment algorithm FATCAT when
used in the rigid mode. In terms of alignment quality,
FATCAT is slightly inferior to FAST, but comparable to
DaliLite. Thus, although FATCAT is an algorithm de-
signed for incorporating structural flexibility, it produces
high-quality alignment in the rigid mode.

CONCLUSION

We have developed a new protein structure alignment
algorithm FAST. It sets itself apart in a number of ways.
First, FAST was carefully designed and implemented to
work much more efficiently than three widely used algo-
rithms that produce residue-level alignments. We show
that this computational task, previously taking seconds
and even minutes, can be reliably accomplished on a
sub-second scale. More importantly, the speedup does not
lead to loss in accuracy. Large-scale comparison using the
SCOP fold classification as the gold standard shows that
FAST is more robust than the slower methods, including
the most widely used DALI. Unlike some other rapid
alignment methods, FAST does not first construct a low-
resolution SSE alignment. We work exclusively with back-
bone C_, atoms; therefore we do not relay on another
program (such as DSSP??) to properly assign SSEs. The
excellent agreement between automated alignments by
FAST and manually curated ones in HOMSTRAD sup-

J.ZHU AND Z. WENG

ports the validity of our approach. We attribute the success
to our scoring scheme that combines C_—C_ distance and
chain directionality. The additional resolving power of-
fered by the directionality terms not only greatly favors
biologically important alignment, but also dramatically
simplifies the optimization problem.

ACKNOWLEDGMENTS

This work was supported by NSF DBI-0078194. Calcula-
tions were performed on a Linux computer cluster sup-
ported by NSF MRI DBI-0116574. We thank Joseph
Szustakowski for insightful discussions.

REFERENCES

1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig
H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic
Acids Res 2000;28:235-242.

2. Gibrat JF, Madej T, Bryant SH. Surprising similarities in struc-
ture comparison. Curr Opin Struct Biol 1996;6:377-385.

3. Holm L, Sander C. Searching protein structure databases has
come of age. Proteins 1994;19:165-173.

4. Chothia C, Lesk AM. The relation between the divergence of
sequence and structure in proteins. EMBO J 1986;5:823—826.

5. Murzin AG. How far divergent evolution goes in proteins. Curr
Opin Struct Biol 1998;8:380-387.

6. Eidhammer I, Jonassen I, Taylor WR. Structure comparison and
structure patterns. J Comput Biol 2000;7:685-716.

7. Falicov A, Cohen FE. A surface of minimum area metric for the
structural comparison of proteins. J Mol Biol 1996;258:871—-892.

8. Gerstein M, Levitt M. Comprehensive assessment of automatic
structural alignment against a manual standard, the scop classifi-
cation of proteins. Protein Sci 1998;7:445—-456.

9. Taylor WR. Protein structure comparison using iterated double
dynamic programming. Protein Sci 1999;8:654—665.

10. Jewett AI, Huang CC, Ferrin TE. MINRMS: an efficient algorithm
for determining protein structure similarity using root-mean-
squared-distance. Bioinformatics 2003;19:625-634.

11. Grindley HM, Artymiuk PJ, Rice DW, Willett P. Identification of
tertiary structure resemblance in proteins using a maximal
common subgraph isomorphism algorithm. J Mol Biol 1993;229:
707-721.

12. Alexandrov NN, Fischer D. Analysis of topological and nontopologi-
cal structural similarities in the PDB: new examples with old
structures. Proteins 1996;25:354-365.

13. Holm L, Sander C. Protein structure comparison by alignment of
distance matrices. J Mol Biol 1993;233:123-138.

14. Escalier V, Pothier J, Soldano H, Viari A. Pairwise and multiple
identification of three-dimensional common substructures in pro-
teins. J Comput Biol 1998;5:41-56.

15. Lathrop RH. The protein threading problem with sequence amino
acid interaction preferences is NP-complete. Protein Eng 1994;7:
1059-1068.

16. Singh AP, Brutlag DL. Hierarchical protein structure superposi-
tion using both secondary structure and atomic representations.
Proc Int Conf Intell Syst Mol Biol 1997;5:284 -293.

17. Szustakowski JD, Weng Z. Protein structure alignment using a
genetic algorithm. Proteins 2000;38:428 —440.

18. Szustakowski JD, Weng Z. K2: protein structure comparisons and
their statistical significance. In: Fogel G, Corne D, editors. Evolu-
tionary Computation in Bioinformatics: Morgan Kaufmann; 2002.

19. Lo Conte L, Brenner SE, Hubbard TJ, Chothia C, Murzin AG.
SCOP database in 2002: refinements accommodate structural
genomics. Nucleic Acids Res 2002;30:264—-267.

20. Mizuguchi K, Deane CM, Blundell TL, Overington JP. HOM-
STRAD: a database of protein structure alignments for homolo-
gous families. Protein Sci 1998;7:2469-2471.

21. Needleman SB, Wunsch CD. A general method applicable to the
search for similarities in the amino acid sequence of two proteins.
J Mol Biol 1970;48:443—-453.

22. Karlin S, Altschul SF. Methods for assessing the statistical
significance of molecular sequence features by using general
scoring schemes. Proc Natl Acad Sci USA 1990;87:2264 -2268.

23.

24.

25.

26.

27.

28.

29.

FAST: PROTEIN STRUCTURE ALIGNMENT ALOGRITHM

Brenner SE, Koehl P, Levitt M. The ASTRAL compendium for
protein structure and sequence analysis. Nucleic Acids Res 2000;
28:254-256.

Holm L, Park J. DaliLite workbench for protein structure compari-
son. Bioinformatics 2000;16(6):566—567.

Shindyalov IN, Bourne PE. Protein structure alignment by incre-
mental combinatorial extension (CE) of the optimal path. Protein
Eng 1998;11:739-747.

Godzik A. The structural alignment between two proteins: is there
a unique answer? Protein Sci 1996;5:1325-1338.

Ye Y, Godzik A. Flexible structure alignment by chaining aligned
fragment pairs allowing twists. Bioinformatics 2003;19 Suppl
2:11246-11255.

Wriggers W, Schulten K. Protein domain movements: detection of
rigid domains and visualization of hinges in comparisons of atomic
coordinates. Proteins 1997;29:1-14.

Boutonnet NS, Rooman MdJ, Ochagavia ME, Richelle J, Wodak SdJ.
Optimal protein structure alignments by multiple linkage cluster-

30.

31.

32.

33.

34.

35.

627

ing: application to distantly related proteins. Protein Eng 1995;8:
647-662.

Ochagavia ME, Richelle J, Wodak SJ. Advanced pairwise struc-
ture alignments of proteins and analysis of conformational changes.
Bioinformatics 2002;18:637—640.

Shatsky M, Nussinov R, Wolfson HJ. Flexible protein alignment
and hinge detection. Proteins 2002;48:242-256.

Kabsch W, Sander C. Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers 1983;22:2577-2637.

Kraulis PJ. MOLSCRIPT: A program to produce both detailed and
schematic plots of protein structures. J Appl Cryst 1991;24:946—
950.

Merritt EA, Bacon DJ. Raster3D—photorealistic molecular graph-
ics. Methods Enzymol 1997;277:505-524.

Kabsch W. A discussion of the solution for the best rotation to
relate two sets of vectors. Acta Crystallogr 1978;34:827—828.

